Caching in ASP.NET

PRESENTED BY

SHILPA KHURANA
A.P CSE DEPT.

Caching in ASP.NET

e Caching is the most critical factor in creating
scalable, high performance web application.

* Caching Locations:

Web Server, Proxy Server and client Browser.
* Types of Caching:

-Output Caching

-Fragment Caching

-Data Caching

Output Caching

What 1s output caching?

(@ OutputCache directive and the cache object
Output caching attributes:

-Duration

-Location

-VaryByParam

-VaryByHeader

-VaryByCustom

What Is Output Caching?

Pages that use the output cache are executed one
time, and the page results are cached

The pre-executed page 1s then served to later
requests

Performance and scalability both benefit
-Server response times reduced
-CPU load reduced

Appropriate caching of pages affects site
performance dramatically

OutputCache Directive and the
Cache Object

* @ OutputCache declaratively controls caching
behavior

For .aspx, .asmx, or .ascx

* The cache object programmatically controls
caching behavior

Output Cache Members: Duration and
Location

* Duration sets the time to cache the output
-In seconds Required

* Location sets the location to cache the output

* Server: The output is held in memory on the Web server and is used
to satisfy requests

* Downstream: A header is added to the response to indicate to proxy
servers to cache the page

* Client: A header 1s added to the response indicating to browsers to
cache the page

* Any: Output cache can be located on any of these locations None:
No output caching is turned on for the item

OutputCache Members: VaryByParam
and VaryByHeader

* VaryByParam

* The cache stores multiple copies of a page based on
specific Querystring or Form parameters and any
combinations thereof

* VaryByHeader

* The cache stores multiple copies of a page based on
HTTP headers

OutputCache Members:
VaryByCustom

* VaryByCustom

-If the value 1s “Browser,” cache varies by
browser type and major version

-If the value 1s a custom string, you must
override
HttpApplication.GetVaryByCustomString in
the Global.asax and implement your own
caching logic

Fragment Caching

Just as you can vary the versions of a page that are
output cached, you can output cache regions of a page

Regions are defined based on user controls

User controls contain their own @OutputCache
directive

Fragment caching supports
-VaryByParam
-VaryByControl

Location not supported because fragments must
reside on server to be assembled

Fragment Caching a User Control

VaryByControl

VaryByControl

-The sixth attribute supported by OutputCache
-Only supported 1n user control caching
-Caching 1s based on user control properties

Data Caching

The data cache holds application data such as strings, datasets, and other
objects

Adding items to the data cache is easy

Although similar to the familiar application variables model, it is much
more powerful

Working with the Cache Object

* Cache object features
-Dependencies allow logic to invalidate cached items
-Scavenging (automatic expiration)
-Callbacks when an 1tem 1s removed from cache

* To use dependencies or callbacks, use Cache.Insert or
Cache.Add

* Code using cached items must be able to both create or insert,
and retrieve cached items

Cache Dependencies

File-based dependencies
-Cached 1tem 1nvalidated when files change
Key-based dependencies

-Cached i1item invalided when another cached item
changes

Time-based dependencies
-Absolute time-based 1nvalidations
-Sliding time-based invalidations
SQL dependencies

-SQL based invalidations

